
The workflow is designed according to the following principles:

1. Manager - a workflow that handles state files, specifically:
1. Reads the list of state files from the /states folder.
2. Sorts them by status.
3. Initiates workers.
4. Reads and copies the statuses of the workers.
5. Updates the information in the state files.

2. Worker - a workflow that:
1. Executes functional tasks.
2. Reads, saves, and updates its own state file.
3. Receives a payload from the manager in a specific format that helps customize the

input data.

This principle is required to customize the list of repetitive steps in Finmars using JSON files (and
provides the ability to execute this customization through an interface, which is currently not
implemented), as well as to use the interface to analyze completed steps, identify errors, and
restart steps.

The workflow manager (com.finmars.standard-workflow:workflow-manager) operates on a cron schedule
(by default - every 1 minute) and performs the following actions:

1. Reads the global_state_manager.json file.
1. If the file does not exist, it creates the file and adds files from /states/managers

according to the following format:

{
 "to-do": [],
 "in-progress": [
 "com.finmars.standard-workflow:workflow-manager-20240821095322.json"
],
 "done": [
 "com.finmars.standard-workflow:workflow-manager-20240724101635.json",
 "com.finmars.standard-workflow:workflow-manager-20240724104102.json"

Overview

How It Works

],
 "paused": []
}

2. Selects the first file from the in-progress array and begins managing it.

Potentially, this could be improved by running multiple threads, but there are certain
limitations since these state files are independent of each other (see the input file
requirements).

3. The manager goes through the workers and checks their statuses:

to-do - launches the workflow worker for a specific item
in-progress - checks the status of items:
error , skip , success - skips to next worker

4. The manager uses the propagate status logic, where:

success - will propagate to the entire worker if all items have this status
error - will propagate the status from the item to the worker level

The manager does not wait for the worker to complete and finishes after starting the worker .

Detailed description provided in Finmars University

Scheme of process

Revision #4
Created 29 August 2024 20:55:41 by Anton Petrushkaneki
Updated 30 August 2024 15:00:37 by Anton Petrushkaneki

https://docs.finmars.com/uploads/images/gallery/2024-08/image-1725030015022.png

