
This section describes the structure of the modules:

1. Standard-workflow
2. Standard-workflow-interface

This section also outlines the principles of creating workflows based on the manager + worker
scheme

System overview

Overview
Workflow Manager
Generate State Workflow
Input Files
Interface (States & Input blocks)
Interface (Files Block)
Interface
Interface Authorization

Configuration instructions

Pipeline Setup for Data Import

DEPRECATED:
Standard-workflow
(One-click)

System overview

System overview

The workflow is designed according to the following principles:

1. Manager - a workflow that handles state files, specifically:
1. Reads the list of state files from the /states folder.
2. Sorts them by status.
3. Initiates workers.
4. Reads and copies the statuses of the workers.
5. Updates the information in the state files.

2. Worker - a workflow that:
1. Executes functional tasks.
2. Reads, saves, and updates its own state file.
3. Receives a payload from the manager in a specific format that helps customize the

input data.

This principle is required to customize the list of repetitive steps in Finmars using JSON files (and
provides the ability to execute this customization through an interface, which is currently not
implemented), as well as to use the interface to analyze completed steps, identify errors, and
restart steps.

The workflow manager (com.finmars.standard-workflow:workflow-manager) operates on a cron schedule
(by default - every 1 minute) and performs the following actions:

1. Reads the global_state_manager.json file.
1. If the file does not exist, it creates the file and adds files from /states/managers

according to the following format:

{
 "to-do": [],
 "in-progress": [
 "com.finmars.standard-workflow:workflow-manager-20240821095322.json"
],
 "done": [
 "com.finmars.standard-workflow:workflow-manager-20240724101635.json",

Overview

How It Works

 "com.finmars.standard-workflow:workflow-manager-20240724104102.json"
],
 "paused": []
}

2. Selects the first file from the in-progress array and begins managing it.

Potentially, this could be improved by running multiple threads, but there are certain
limitations since these state files are independent of each other (see the input file
requirements).

3. The manager goes through the workers and checks their statuses:

to-do - launches the workflow worker for a specific item
in-progress - checks the status of items:
error , skip , success - skips to next worker

4. The manager uses the propagate status logic, where:

success - will propagate to the entire worker if all items have this status
error - will propagate the status from the item to the worker level

The manager does not wait for the worker to complete and finishes after starting the worker .

Detailed description provided in Finmars University

Scheme of process

https://docs.finmars.com/uploads/images/gallery/2024-08/image-1725030015022.png

System overview

User Code: com.finmars.standard-workflow:workflow-manager
Payload: Optional

The Workflow Manager is designed to execute workers in a specific order with a defined payload.
Its primary use case is when no payload is provided.

1. Attempt to read the global_state_manager.json file. If it doesn't exist, create it.
2. Read the list of files from /states/managers/ .
3. Categorize by status and save in global_state_manager.json :

If the file doesn't exist, add it to "to-do"
If it's in "to-do", change the status to "in-progress"
If the file exists, update its status

4. Read the contents of the file in "in-progress" status

Workflow Manager
Overview

Global State Manager Processing
Logic

{
 "to-do": [],
 "in-progress": [
 "com.finmars.standard-workflow:workflow-manager-20240821095322.json"
],
 "done": [
 "com.finmars.standard-workflow:workflow-manager-20240724101635.json",
 "com.finmars.standard-workflow:workflow-manager-20240724104102.json"
],
 "paused": []
}

The global_state_manager.json file serves as a central registry for all workflow states in the system:

1. Initialization: If global_state_manager.json doesn't exist, it's created by scanning the
/states/managers/ directory and categorizing all existing state manager files.

2. Retrieval: The existing global_state_manager.json is loaded and its data is updated.
3. Updating: The global state manager is updated by:

Identifying and adding new state manager files to the "in-progress" category
Checking and updating the status of each tracked state manager file
Moving state managers between categories based on their current status

4. Saving: After updates, the modified global_state_manager.json is saved back to storage.
5. Workflow Processing: The main workflow_manager function uses data from

global_state_manager.json to determine which state managers to process when no specific
payload is provided.

Each state manager file represents an individual workflow instance, containing information about
its workers and their respective items (tasks):

1. Loading: Individual state manager files are loaded based on paths stored in
global_state_manager.json or provided in the payload.

2. Status Propagation: Each worker's status is updated based on the statuses of its items.
3. Worker Processing: For each worker in a state manager:

Skipped if status is 'success', 'skip', or 'ignore'
If 'in-progress', each item's status is checked:

'in-progress' items: latest state is fetched and updated
'to-do' items: a new workflow is initiated

If 'to-do', processing starts with the first 'to-do' item
4. Item State Management: Each item within a worker has its own state, including a

state_path used to fetch and update item-specific states.
5. Workflow Initiation: New items are processed by calling the start_workflow function with

the appropriate user code and payload.
6. State Updating: After any changes, the modified state manager is saved back to its file.

Interaction with
global_state_manager.json

State Managers and Workers/Items
Interaction

System overview

User Code: com.finmars.standard-workflow:generate-state

This script is designed to generate state files for state managers. It processes input data to create
a structured state file that includes information about workers and their respective states.

The main workflow function is a task that generates the state file based on the provided payload.

payload : A dictionary containing the necessary information for state generation.

1. Validates the presence of a payload
2. Retrieves the input data from the specified path input_file
3. Generates a new state file using the generate_state_file function
4. Saves the generated state file
5. Updates the status of the operation in the state file

1. get_first_transaction_date : Retrieves the earliest transaction date from the API.
2. get_next_date : Calculates the next date based on the given periodicity.
3. get_period_end_date : Calculates the end date of a period based on the start date and

periodicity.
4. build_url : Constructs the full API URL for a given endpoint.

Generate State Workflow
Overview

Workflow Function

Parameters:

Process:

Helper Functions

5. get_headers : Generates headers with authorization token for HTTP requests.
6. log_message : Logs a message with a timestamp.
7. save_file : Saves data to a specified file path in JSON format.
8. get_files : Lists files in the specified directory.
9. get_folders : Lists directories in the specified path.

10. get_data : Reads data from a JSON file.

System overview

The input file is a JSON file that contains the configuration for generating the state file. It specifies
the overall workflow and individual worker configurations. Based on the provided examples, here's
a detailed breakdown of the input file structure and its options.

Input Files
Overview

Input File Structure
{
 "user_code": "string",
 "configuration_code": "string",
 "name": "string",
 "schedule": null,
 "workers": [
 {
 "order": "integer",
 "configuration_code": "string",
 "name": "string",
 "user_code": "string",
 "state_type": "string",
 "download_options": {
 "date_from": "string | null",
 "date_to": "string | null",
 "type": "string | null",
 "periodicity": "string | null",
 "portfolios": ["string"] | null,
 "secret": "string | null"
 },
 "data_options": {
 "global_status": "string | null",
 "source": "string | null",

1. Root Level Fields
user_code : Always "workflow-manager".
configuration_code : Always "com.finmars.standard-workflow".
name : A descriptive name for the workflow, e.g., "Exante Historical - Step 1
(Download): positions, transactions".
schedule : Deprecated. Always null.

2. Worker Fields
order : The execution order of the worker within the workflow (integer).
configuration_code : Usually "com.finmars.standard-workflow".
name : A descriptive name for the worker's task.
user_code : Identifies the specific task, e.g., "download-exante-positions",
"preprocess-exante-transactions", "generate-state".
state_type : Can be "period", "files", or "fixed".

3. Download Options
date_from : Start date for data retrieval, e.g., "2024-01-01" or null.
date_to : End date for data retrieval, e.g., "2024-07-14" or null.
type : Can be "day", "period", or null.
periodicity : Can be "monthly" or null.
portfolios : An array of portfolio identifiers or null.

 "type": "string | null",
 "portfolios": null
 },
 "import_options": {
 "scheme": "string | null",
 "import_type": "string | null",
 "pricing_policy": "string | null"
 },
 "calculation_options": {
 "date_from": null,
 "date_to": null,
 "portfolios": null
 },
 "state_options": {
 "input_path": "string | null"
 }
 }
]
}

Field Descriptions

secret : A string identifier for authentication, e.g., "itech-demo" or null.
4. Data Options

global_status : Can be "initial_data", "to_import", or null.
source : Usually "exante" or null.
type : Can be "positions", "transactions", "instruments", or null.
portfolios : Usually null in the provided examples.
sync_to : Used in "sync-files" tasks, e.g., "preprocessed".

5. Import Options
scheme : Import scheme identifier, e.g., "com.finmars.standard-import-from-
file:accounts.account:account".
import_type : Can be "simple", "transaction", or null.
pricing_policy : Usually "com.finmars.standard-pricing:standard" or null.

6. Calculation Options
date_from : Usually null in the provided examples.
date_to : Usually null in the provided examples.
portfolios : Usually null in the provided examples.

7. State Options
input_path : Path to the next workflow file, e.g., "/input-
workflows/exante/exante_historical_step_2.json" or null.

Here's an example based on the "exante_historical_step_1.json" file:

Example Input File

{
 "user_code": "workflow-manager",
 "configuration_code": "com.finmars.standard-workflow",
 "name": "Exante Historical - Step 1 (Download): positions, transactions",
 "workers": [
 {
 "order": 1,
 "configuration_code": "com.finmars.standard-workflow",
 "name": "Download Positions",
 "user_code": "download-exante-positions",
 "state_type": "period",
 "download_options": {
 "date_from": "2024-01-01",
 "date_to": "2024-07-14",
 "type": "day",
 "periodicity": "monthly",
 "portfolios": ["Portfolio_007"],

The structure of the input file remains consistent across different steps of the workflow.
Each step (represented by a separate JSON file) focuses on specific tasks such as
downloading, preprocessing, or importing data.
The "Generate State" worker is typically the last worker in each step, setting up the next
step in the workflow.
Options that are not relevant for a particular worker are usually set to null .
The state_type determines how the worker processes data: "period" for date-based
operations, "files" for file-based operations, and "fixed" for single-execution tasks.
The user_code in the worker configuration specifies the exact workflow to be performed,
such as downloading, preprocessing, or importing specific types of data.

 "secret": "secret-path-demo"
 },
 "data_options": {
 "global_status": null,
 "source": null,
 "type": null,
 "portfolios": null
 },
 "import_options": {
 "scheme": null,
 "import_type": null,
 "pricing_policy": null
 },
 "calculation_options": {
 "date_from": null,
 "date_to": null,
 "portfolios": null
 },
 "state_options": {
 "input_path": null
 }
 },
 // ... other workers ...
]
}

Notes on Input Files

System overview

This Vue component, named StateTable , provides a user interface for managing state files and
input files. It allows users to view, search, filter, and interact with these files in a tabular format.

1. Tabbed interface for States and Inputs
2. Searchable and filterable table
3. Expandable rows with detailed file content
4. Ability to start workflows
5. File status management
6. File deletion

activeTab : Controls which tab is currently active (0 for States, 1 for Inputs)
pagination : Controls table pagination
tabs : Defines the available tabs and their configurations
apiBaseUrl : Base URL for API requests
search : Stores the current search term
workerStatusOptions : Available status options for workers
selectedStatus , selectedGroup : For filtering in respective tabs
rows : Stores the main data displayed in the table

Interface (States & Input
blocks)
Overview

Key Features

Component Structure
Data Properties

filteredData : Returns the filtered and searched data for the table
filteredWorkerFields : Filters specific fields from worker data for display

1. selectTab(index) : Switches between States and Inputs tabs
2. fetchApiData(endpoint) : Fetches data from the API
3. refreshFiles() : Refreshes the file list
4. startWorkflow(user_code, payload) : Initiates a new workflow
5. checkWorkflowStatus(workflowID, resolve, reject) : Checks the status of a running workflow
6. fetchFiles() : Fetches and processes the list of files
7. fetchFileContent(filePath, row) : Retrieves detailed content for a specific file
8. startWorkflowForRow(row, activeTab) : Starts a workflow for a specific row
9. toggleExpand(row) : Expands/collapses a row to show/hide details

10. saveStatus(row) : Saves the current status of a file
11. uploadFile(jsonData, fileName, path, currentFileIndex, totalFiles) : Uploads a file to the server
12. deleteFile(row) : Deletes a file from the server

1. The component displays two tabs: "States" and "Inputs"
2. Each tab shows a table with relevant information about the files
3. Use the search bar to filter files by any field
4. Use the status/group dropdown (depending on the active tab) to filter files

1. Click the '+' button on a row to expand and view detailed information
2. In the expanded view:

For States: You can view worker details and their individual states
For Inputs: You can view the structure of the input file

Computed Properties

Methods

Usage Guide
Viewing Files

Interacting with Files

File Actions

1. Start Workflow:
Click "Start Workflow" in the expanded view to initiate a workflow for that file
For States, it uses the workflow-manager user code
For Inputs, it uses the generate-state user code

2. Save State (States tab only):
Click "Save State" to update the file on the server with any changes

3. Delete State (States tab only):
Click "Delete State" to remove the file from the server

1. In the expanded view, each worker and item has a status dropdown
2. Click on the status to open the dropdown and select a new status

Click the refresh button (circular arrow icon) to fetch the latest data from the server

The component interacts with several API endpoints:

1. File listing: ${apiBaseUrl}/api/v1/explorer/view/?path=components/states_files.json or
${apiBaseUrl}/api/v1/explorer/view/?path=components/inputs_files.json

2. File content: ${apiBaseUrl}/api/v1/explorer/view/?path=${filePath}
3. Workflow start: ${apiBaseUrl}/workflow/api/workflow/run-workflow/
4. Workflow status check: ${apiBaseUrl}/workflow/api/workflow/${workflowID}/
5. File upload: ${apiBaseUrl}/api/v1/explorer/upload/
6. File deletion: ${apiBaseUrl}/api/v1/explorer/delete/?path=${filePath}&is_dir=false

The component uses custom icons (IconRefresh , IconCopy , IconDownload , IconTabActive)
which should be properly imported
Authorization is handled by the authorization() function from @/utils/customFetch
The component relies on the Quasar framework for UI components (e.g., q-table , q-input ,
q-select)

Managing Worker and Item States

Refreshing Data

API Integration

Notes for Developers

System overview

The FileTable component is a Vue component that provides a user interface for managing and
uploading files. It allows users to view existing files in a table format, filter and search through files,
and upload new files to specific locations.

1. Table view of existing files with sorting and filtering capabilities
2. File upload functionality with source and data type selection
3. Progress bar for file uploads
4. Refresh functionality to update the file list

pagination : Controls table pagination
search : Stores the current search term
selectedType , selectedSource , selectedStatus : For filtering the file table
typeOptions , sourceOptions , statusOptions : Options for the filter dropdowns
rows : Stores the main data displayed in the table
columns : Defines the structure of the table
uploadView : Toggles between file table view and upload view
selectedDataTypeUpload , selectedSourceUpload : For selecting upload options
dataTypeUploadOptions , sourceUploadOptions : Options for upload dropdowns
filesToUpload : Stores files selected for upload
uploadInProgress , uploadProgress : Manages upload state and progress

Interface (Files Block)
Overview

Key Features

Component Structure
Data Properties

filteredData : Returns the filtered and searched data for the table

1. changeToUploadFiles() : Toggles between file table view and upload view
2. refreshFiles() : Refreshes the file list by triggering a workflow
3. startWorkflow(user_code, payload) : Initiates a new workflow
4. checkWorkflowStatus(workflowID, resolve, reject) : Checks the status of a running workflow
5. fetchFiles() : Fetches and processes the list of files
6. handleFileUpload(event) : Handles file selection for upload
7. uploadFiles() : Manages the file upload process
8. getPath() : Generates the upload path based on selected options
9. uploadFile(file, path, currentFileIndex, totalFiles) : Uploads a single file

1. The component displays a table of files with columns for File, Type, Source, and Status
2. Use the search bar to filter files by any field
3. Use the Data Type, Source, and Status dropdowns to further filter the table

1. Click the '+' button to switch to the upload view
2. Select the Source and Data Type for the upload
3. Choose files to upload using the file input
4. Click "Upload Files" to start the upload process
5. A progress bar will display the upload progress

Click the refresh button (circular arrow icon) to fetch the latest data from the server

Computed Properties

Methods

Usage Guide
Viewing Files

Uploading Files

Refreshing Data

The component interacts with several API endpoints:

1. File listing: ${apiBaseUrl}/api/v1/explorer/view/?path=components/data_files.json
2. Workflow start: ${apiBaseUrl}/workflow/api/workflow/run-workflow/
3. Workflow status check: ${apiBaseUrl}/workflow/api/workflow/${workflowID}/
4. File upload: ${apiBaseUrl}/api/v1/explorer/upload/

The component uses custom icons (IconPlus , IconRefresh) which should be properly
imported
Authorization is handled by the authorization() function from @/utils/customFetch
The component relies on the Quasar framework for UI components (e.g., q-table , q-input ,
q-select)
File uploads include a timestamp in the filename to ensure uniqueness

1. Implement pagination on the server-side for better performance with large datasets
2. Add more robust error handling and user notifications for upload failures
3. Implement file chunking for large file uploads (commented out in the current version)
4. Add a preview feature for uploaded files
5. Implement drag-and-drop functionality for file uploads

API Integration

Notes for Developers

Potential Enhancements

System overview

This standard-workflow-interface module provides a comprehensive interface for managing states and
files within a workflow system. The interface is divided into two main components: StateTable and
FileTable, which are displayed side by side in the main application view.

The main application is defined in App.vue and consists of two primary components:

1. StateTable
2. FileTable

These components are laid out side by side using a flex container for optimal screen utilization.

Interface
Overview

Main Application Structure

https://docs.finmars.com/uploads/images/gallery/2024-08/image-28.png

The StateTable component manages and displays workflow states.

Interface (States & Input blocks)

Key features:

Displays a list of workflow states
Allows filtering and searching of states
Provides detailed view of each state
Enables starting workflows and managing state status

The FileTable component manages and displays files within the system.

Interface (Files Block)

Key features:

Displays a list of files with their types, sources, and statuses
Allows filtering and searching of files
Provides file upload functionality
Enables refreshing the file list

The interface is divided into two main sections:

1. Left Side (StateTable):
Tabs for switching between "States" and "Inputs"
Search and filter options
Table displaying state information
Expandable rows for detailed state information

2. Right Side (FileTable):
Table displaying file information

Key Components
1. StateTable

2. FileTable

User Interface

https://docs.finmars.com/books/deprecated-standard-workflow-one-click/page/interface-states-input-blocks
https://docs.finmars.com/books/deprecated-standard-workflow-one-click/page/interface-files-block

Search and filter options
File upload functionality

Both components feature a refresh button (circular arrow icon) to update their respective
data.
The interface uses a consistent design language, with similar table layouts and filter
options.

Both components interact with backend APIs for data retrieval and manipulation. The API calls are
managed through custom fetch functions defined in customFetch.js .

The project uses Vue 3 with the Composition API.
Quasar framework is used for UI components.
Custom icons are used and should be properly imported in each component.
API base URL is dynamically determined based on the current URL.

Common Features

API Integration

Development Notes

System overview

This project uses token-based authentication with Keycloak integration. The authentication process
is managed through custom functions defined in customFetch.js .

getCookie(name)

Retrieves a cookie value by name.

authorization()

Prepares the authorization header for API requests using the access token stored in cookies.

refreshTokenAndRetry(request)

Handles token refresh when a request fails due to an expired token:

1. Updates the token using Keycloak.
2. Updates cookies with new token information.
3. Retries the original request with the new token.

customFetch(request)

A wrapper around the fetch API that handles authentication:

1. Attempts the initial request.
2. If a 401 (Unauthorized) response is received, it attempts to refresh the token and retry the

request.

getApiBaseUrl()

Dynamically determines the API base URL based on the current page URL.

uploadFileWithProgress(endpoint, formData, onUploadProgress)

Interface Authorization
Overview

Key Functions

Handles file uploads with progress tracking and token refresh capabilities.

1. Initial requests include the access token from cookies.
2. If a request fails due to an expired token (401 response): a. The token is refreshed using

Keycloak. b. Cookies are updated with the new token information. c. The original request
is retried with the new token.

3. If token refresh fails, the user is redirected to the Keycloak login page.

Access tokens are stored in cookies and are included in the Authorization header of each
request.
Token refresh is handled automatically when a request fails due to an expired token.
HTTPS should be used in production to secure token transmission.

The getDevToken() function is available for development purposes but should not be used
in production.
Ensure Keycloak is properly configured in your development and production
environments.
Be cautious when modifying the authentication flow to maintain security.

For any changes to the authentication process, consult with the security team to ensure best
practices are followed.

Authentication Flow

Security Notes

Development Considerations

Configuration instructions

Configuration instructions

1. Document the Data Import Pipeline:
Outline the steps required to set up the data import pipeline.

2. Identify Missing Workers:
Compile a list of workers that are not included in the current implementation.

3. Determine Appropriate Module:
Identify the module where each worker should be located.

If the necessary module does not exist, create a new one.
4. Define State File Format:

Specify the state file format that each worker should operate with.
5. Evaluate Existing Options:

Determine if the current options are sufficient to complete the scenario.
If not, additional development of the generate-state function is required.

6. Update Vault (if applicable):
If Vault is used, add the necessary data to Vault.

7. Create Input Files for the Pipeline:
Generate input files for the pipeline, considering the missing workers.

8. Run State Generator for the First Input File:
Execute the state generator on the first input file.

9. Reach Missing Worker via Workflow Manager:
Proceed to the missing worker by running the workflow manager.

10. Create Worker Stub for Payload Display:
Develop a stub for the worker to display the payload.

11. Write Missing Worker Script:
Develop the script for the missing worker.

12. Run Workflow Manager Post-Debugging:
After debugging, restart the workflow manager.

13. Create Production Input Files:
Create input files for production (daily and historical data).

14. Set Up Cron Job for Daily Tasks:
Schedule the daily tasks using a cron job (pending update to version 1.9.0).

Pipeline Setup for Data
Import

